

Apple II, II+, //c, //e, //c+
	

	

	

	

	

	

	

	

	

	

	

	

	
Revision	7	–	March	2024	

Jeff	Mazur,	Dean	Claxton	 	

API	Reference	

ROMX API Reference ROMX+, ROMXe, ROMXc, ROMXc+
	

	

1
	

Contents
ROMX	API	Overview	..	2	

Activating	the	ROMX	Firmware	Bank	..	2	

Displaying	the	ROMX	Menu	..	2	

Switching	Bank	Selects	..	3	

Switching	Temporary	ROM	bank	...	3	

Presetting	System	ROM	bank	..	3	

Presetting	the	Text	ROM	bank	..	4	

Reading	the	Default	System	ROM	bank	..	4	

Reading	the	Default	Text	ROM	bank	...	4	

Reading	the	current	BootDelay	value	...	5	

Accessing	the	Real-Time	Clock	(RTC)	...	5	

Linking	to	a	second	Bank	on	launch	..	6	

Special	Note	for	ZIP	CHIP	users	...	7	

Other	Hardware	Addresses	...	8	

ROMX+	Only	..	8	

Reserved	addresses	...	8	

ROMX	detection	routine	...	9	

Clock	Driver	routine	..	9	

	

	

ROMX API Reference ROMX+, ROMXe, ROMXc, ROMXc+
	

	

2
	

ROMX API Overview
	

This	guide	will	allow	the	programmer	to	take	advantage	of	many	ROMX	features	to	enhance	or	produce	their	
own	custom	solutions.	Unless	otherwise	noted,	all	of	the	addresses	listed	below	can	be	accessed	with	either	
READ	or	WRITE	operations,	with	the	BIT	instruction	being	the	recommended	method.	The	term	ROMX	in	this	
document	will	refer	to	the	ROMX+,	ROMXe,	ROMXc,	and	ROMXc+	versions	only,	not	the	original	ROMX	for	the	
Apple][and	Apple][+	computers.	IMPORTANT:	There	is	a	separate	API	Reference	document	that	pertains	to	the	
original	ROMX	product	for	the	Apple	II/II+.	

Activating the ROMX Firmware Bank
	

Assuming	motherboard	ROM	is	enabled,	at	any	time	and	from	any	bank	the	following	address	sequence	will	
instantly	activate	the	Firmware	Bank	0	image	of	the	ROMX:	

$FACA	$FACA	$FAFE			(immediately	switches	to	Bank	0)	

Upon	entering	the	firmware	in	this	manner,	several	other	softswitches	will	be	set:	TempBanks	($F850),	
TempRomBank0	($F830),	and	TempLower	($F824).	See	details	below.	NOTE:	If	interrupts	are	enabled,	you	
should	disable	them	before	entering	the	firmware	and	then	re-enable	afterwards.	

Manually,	from	the	monitor	you	can	type	FACA	FACA	FAFE	and	press	Return	to	activate	ROM	bank	0.	Current	
versions	of	the	ROMX	firmware	duplicate	most	of	the	Autostart	Monitor	at	$F800-$FFFF	so	you	can	easily	use	
the	standard	commands	and	seamlessly	switch	between	your	System	ROM	and	the	ROMX	Firmware	bank.	Note	
however	that	not	all	of	the	F8	ROM	is	guaranteed	to	match	in	future	versions.	

The	following	ROMX	functions	are	only	available	after	activating	Bank	0:		

• Activate	ROMX	Menu	
• Switch	Bank	Selects	
• Switch	System	ROM	bank	
• Switch	Text	ROM	bank				
• Read	the	Default	System	ROM	bank	
• Read	the	Default	Text	ROM	bank	
• Set	and	Read	the	Clock/NVRAM	

	

			

Displaying the ROMX Menu
	

While	in	Bank	0,	you	can	bring	up	the	ROMX	menu	with	or	without	the	launch	countdown.	

$DFD0 (JMP or monitor G command; starts countdown)

ROMX API Reference ROMX+, ROMXe, ROMXc, ROMXc+
	

	

3
	

To	bring	up	the	menu	without	the	countdown,	execute:	

JSR $DFD9 (moves ROMX code to RAM)
JSR $1012 (init ROMX code in RAM)
JMP $103C (launch ROMX Menu in RAM)

Switching Bank Selects
	

ROMX	has	two	System	ROM	bank	pointers;	one	holds	a	Temporary	bank	while	the	firmware	is	active	and	the	
other	stores	the	Main	bank,	which	is	selected	when	the	firmware	exits.	While	in	Bank	0,	accessing	these	
addresses	will	switch	to	the	selected	Bank:	

$F850 (selects Temporary Bank) default when ROMX activated
$F851 (selects Main Bank) default when ROMX exits

If	you	switch	out	of	bank	0	you	will	need	to	use	FACA	FACA	FAFE	to	return	to	bank	0	again.	

Manually,	from	the	monitor	after	activating	ROM	Bank	0,	type	F851	and	press	Return	to	exit	to	the	active	Main	
bank.	

	

Switching Temporary ROM bank
	

While	in	Bank	0,	accessing	any	address	in	the	range	$F83x	will	switch	to	the	selected	Bank	x	(where	x	is	1-9,A-F).	

$F835 switches to Bank 5

If	you	switch	out	of	bank	0	you	will	need	to	use	FACA	FACA	FAFE	to	return	to	bank	0	to	switch	again.	

	

Presetting System ROM bank
	

While	in	Bank	0,	accessing	any	address	in	the	range	$F80x	will	preset	the	Current	System	ROM	bank	to	the	
selected	Bank.	That	bank	will	be	activated	when	exiting	the	firmware	Bank	0	via	the	$F851	switch.		

$F805 presets the Main System ROM to Bank 5

Manually,	from	the	monitor,	after	activating	ROM	Bank	0,	type	F805	and	press	enter	to	preset	the	Main	System	
ROM	to	bank	5.

	

	

ROMX API Reference ROMX+, ROMXe, ROMXc, ROMXc+
	

	

4
	

Presetting the Text ROM bank
	

If	you	have	an	optional	ROMX	Text	ROM	board	installed,	while	in	Bank	0	accessing	any	address	in	the	range	
$F81x	will	preset	the	Main	Text	ROM	Bank	to	x	(where	x	is	0-9,A-F).	The	font	will	change	when	exiting	Bank	0.	If	
no	Text	board	is	installed,	this	will	have	no	effect.	

$F815 presets the Main Text ROM to Bank 5

Manually,	from	the	monitor,	after	activating	ROM	Bank	0,	type	F815	and	press	Return	to	preset	the	Text	ROM	to	
bank	5.	

Reading the Default System ROM bank
	

While	in	Bank	0,	reading	this	location	will	return	the	current	default	ROM	bank.	The	value	will	be	in	the	range	of	
$01-$0F.	

$D034 (reads current System default Bank)

Reading the Default Text ROM bank
	

While	in	Bank	0,	reading	this	location	will	return	the	current	default	Text	ROM	bank.	The	value	will	be	in	the	
range	of	$10	-$1F.	

$D02E (reads current Text default Bank)

The	following	code	(from	the	TEXT.DEMO)	program	will	illustrate	the	use	of	these	commands:	

 0300 - 48 PHA
 0301 – 2C CA FA BIT $FACA ;Select ROMX Bank 0
 0304 - 2C CA FA BIT $FACA
 0307 - 2C FE FA BIT $FAFE
 030A – AD 34 D0 LDA $D02E ;Retrieve Default Text ROM bank
 030D – 8D 1B 03 STA $0318 ;So we can read it later
 0310 – 2C 10 F8 LDA $F81x ;Select Text Bank ($0311 modified externally)
 0313 – 68 PLA
 0314 - 2C 51 F8 BIT $F851 ;Exit firmware and restore original ROM bank
 0317 - 60 RTS

	 	

ROMX API Reference ROMX+, ROMXe, ROMXc, ROMXc+
	

	

5
	

	

Reading the current BootDelay value
	

While	in	Bank	0,	reading	this	location	will	return	the	current	BootDelay	value.	The	value	will	be	in	the	range	of	
$00	-$0F.	The	actual	delay	in	seconds	is	approximately	this	value	divided	by	3.		

NOTE:	Firmware	version	1.1.4	and	above	treat	a	BootDelay	of	$0F	as	Forever	or	Infinite	Delay.	

$DECA (reads Delay Value)

Accessing the Real-Time Clock (RTC)
	

ROMX	uses	an	MCP7940	Battery-Backed	Clock/Calendar	chip	to	provide	time	and	date	information.	This	chip	
also	contains	64	bytes	of	battery-backed	SRAM	(Non-Volatile	Memory).	The	first	16	bytes	are	reserved	for	
ROMX,	but	the	remaining	area	is	available	for	user	applications.	There	will	be	an	official	procedure	for	allocating	
and	tracking	this	space	to	avoid	conflicts.	See	theRomExchange.com	for	the	latest	details.	

The	MCP7940	has	various	registers	that	hold	clock,	control,	and	other	information.	The	full	data	sheet	can	be	
found	at	https://www.microchip.com/wwwproducts/en/MCP7940N	.	

There	are	two	routines	in	the	ROMX	firmware	to	facilitate	setting	and	reading	the	RTC.	Both	use	a	7-byte	buffer	
at	location	$2B0	to	temporarily	store	data	for	writing	to	or	reading	from	the	clock.		After	enabling	Bank	0:	

RTC_BUF EQU $2B0 ;use keyboard buffer for temp storage

Set_Clock JSR $C803 ;set the RTC using data in RTC_BUF
Read_Clock JSR $C806 ;read the RTC storing data in RTC_BUF

Note	that	both	routines	transfer	raw	data;	it	is	up	to	the	calling	routine	to	set	and	handle	various	bits	that	are	
used	for	control	or	formatting.	A	full	description	of	these	bits	can	be	found	in	the	MCP7940	datasheet.	But	the	
clock	data	can	roughly	be	obtained	using	the	following	table	of	registers:	

REG_RTCSEC = 0x00; // Register Address: Time Second
REG_RTCMIN = 0x01; // Register Address: Time Minute
REG_RTCHOUR = 0x02; // Register Address: Time Hour
REG_RTCWKDAY = 0x03; // Register Address: Date Day of Week
REG_RTCDATE = 0x04; // Register Address: Date Day
REG_RTCMTH = 0x05; // Register Address: Date Month
REG_RTCYEAR = 0x06; // Register Address: Date Year

ROMX API Reference ROMX+, ROMXe, ROMXc, ROMXc+
	

	

6
	

To	read	the	clock	from	the	Monitor:	
	
FACA FACA FAFE ;activate bank 0
C806G ;read clock
F851 ;exit bank 0
2B0.2B6 ;show results (typical values below)

2B0- D5 Seconds = 55 + $80 ST Oscillator enabled bit
2B1- 50 Minutes = 50
2B2- 07 Hour = 07 + $00 24-hour format
2B3- 2E WeekDay = 06 + $28 VBATEN battery enable, OSCRUN
2B4- 17 Date = 17
2B5- 04 Month = 04 + $00 Not Leap Year
2B6- 21 Year = 21

While	we	strongly	suggest	using	the	built-in	firmware	routines,	it	is	also	possible	to	access	the	MCP7940	directly	
over	its	I2C	bus	using	the	following	addresses.	

SCL_LO EQU $F860 ;set SCL low
SCL_HI EQU $F861 ;set SCL high
SDA_LO EQU $F862 ;set SDA low
SDA_HI EQU $F863 ;set SDA high
RTC_Read EQU $F86C ;disable SDA so we can read RTC
RTC_Send EQU $F86D ;enable SDA so we can write RTC
RTC_Out EQU $F86F ;output D7 to data bus

Linking to a second Bank on launch
	

When	launching	an	image	whose	Description	has	an	associated	&D	command	(Dual	Image,	or	Double	Bank),	a	
second	(and	conceivably	more)	image	bank(s)	can	be	run	before	actually	launching	the	selected	Bank.	If	the	
Description	contains	the	characters	&D	in	positions	30-31	of	the	string,	then	the	next	character	will	be	
interpreted	as	a	link	to	another	bank	that	will	be	loaded	when	the	original	bank	is	selected.		

Normally,	when	a	Bank	is	selected	using	a	bank	key	(1-9,	A-F)	or	when	the	Menu	exits	after	the	X)it	command	or	
times	out,	the	default	Text	ROM	is	enabled	followed	by	a	check	for	either	an	associated	Text	Bank	and/or	Dual	
bank.	If	neither	is	present,	then	the	ROMX	activates	the	selected	image	and	Jumps	to	the	RESET	vector	pointed	
to	by	$FFFC/D	in	that	image.	

	

ROMX API Reference ROMX+, ROMXe, ROMXc, ROMXc+
	

	

7
	

If	there	is	an	associated	Text	Bank,	it	will	first	select	that	Bank	overriding	the	default	Text	bank.	Then	it	will	
continue	launching	the	System	Image	using	the	RESET	vector.	

If	there	is	a	Dual	bank,	then	code	will	be	executed	to	select	that	bank	and	Jump	to	its	entry	code	pointed	to	by	
the	$FFFE/F	vector	in	its	image.	The	current	bank	(i.e.	the	one	selected	in	the	Menu)	will	be	passed	in	location	
$02A6	(in	the	range	$01-$0F)	so	that	after	the	secondary	code	has	executed	it	can	resume	selecting	and	
launching	the	desired	image.		

In	a	similar	fashion,	any	bank	that	appends	the	&Sn	command	will	be	treated	as	an	application	that	first	loads	a	
System	ROM	in	bank	n	before	running	its	own	code.	The	desired	System	ROM	is	passed	in	location	$02A6	and	
the	application’s	own	bank	can	be	found	at	$0287	when	it	is	launched.	

Special Note for ZIP CHIP users
	

If	your	computer	is	equipped	with	a	ZIP	CHIP	accelerator,	there	are	a	couple	of	programming	changes	you	need	
to	consider	when	accessing	the	ROMX.	Because	the	current	ROMX	design	cannot	run	at	accelerated	speeds	or	
with	a	cache	enabled,	you	must	programmatically	disable	the	ZIP	CHIP	before	accessing	the	ROMX	through	its	
API.	This	can	be	done	either	with	a	full	disable	(see	ZIP	CHIP	manual)	or	for	simple	tasks	by	temporarily	hitting	an	
I/O	address	for	a	slot	configured	in	the	ZIP	to	run	as	NORMAL.	For	example,	the	default	speed	for	Slot	6	is	
NORMAL	so	you	could	access	the	ROMX	in	this	way	:	

	

 BIT $C0E0 ;Temporarily disable ZIP CHIP
 BIT $FACA ;Select ROMX Bank 0
 BIT $FACA
 BIT $FAFE

This	method	will	work	if	your	call	to	ROMX	takes	less	than	the	50	mS	provided	by	the	slot	delay.	Thus	accessing	
the	clock	or	changing	a	text	font	can	be	done	this	way.	You	can	also	do	the	same	thing	from	Applesoft	with:	

 X = PEEK(49376)

In	fact,	the	CLOCK.SET	and	TEXT.DEMO	programs	on	the	ROMX	Utilities	disk	do	exactly	that.	There	should	be	
little	risk	in	adding	these	extra	steps	to	your	programs	since	machines	without	a	ZIP	CHIP	will	effectively	ignore	
them.	NOTE:	Most	likely	you	will	not	be	able	to	execute	commands	this	way	directly	from	the	Monitor.	They	
must	be	run	from	a	program.	

				

	

	

ROMX API Reference ROMX+, ROMXe, ROMXc, ROMXc+
	

	

8
	

Other Hardware Addresses
	

Since	the	ROMX	banks	can	hold	32K	but	only	map	to	the	roughly	16K	ROM	space	at	$C1xx-$FFFF,	each	bank	is	
sub-divided	into	a	lower	and	upper	bank.	This	is	similar	to	how	the	Apple	//c	System	ROMs	(except	ROM	255)	
are	mapped.	When	in	the	Main	operating	mode,	selection	of	the	sub-banks	is	handled	in	the	usual	fashion	by	
the	RA14	signal	from	the	IOU	chip.	In	the	ROMX+	and	ROMXe	–	and	while	in	the	Bank	0	firmware	–	sub-bank	
selection	is	handled	by	the	following	softswitches:	

$F820 (Selects Main ROM Lower Bank)
$F821 (Selects Main ROM Upper Bank)
$F824 (Selects Temporary ROM Lower Bank)
$F825 (Selects Temporary ROM Upper Bank)

ROMX+ Only
The	ROMX+	also	implements	a	IIe	style	CXROM	switch	to	allow	access	to	the	$C100-$CFFF	range	within	the	
ROM.	This	uses	the	standard	softswitch	addresses	(which	work	in	all	Banks,	not	just	Bank	0	firmware):	
		
$C006 (Selects ROM on cards)
$C007 (Selects ROM on motherboard)

There	is	also	a	“master	switch”	to	enable	this	CXROM	switching	(these	only	work	from	Bank	0	firmware):	

$F82C (Disables the CXROM switching)
$F82D (Enables the CXROM switching)

The	firmware	leaves	the	CXROM	switching	enabled	upon	exit.	This	allows	other	banks	and	your	own	programs	
access	to	the	$C100-$CFFF	area	of	the	ROM.	While	Apple	II(+)	programs	will	not	normally	use	this	space	(and	
indeed,	the	standard	Apple	II	ROM	images	will	be	blank	there),	it	should	be	safe	to	leave	this	switching	enabled.	
You	are	free	to	add	your	own	code	in	this	space	to	enhance	the	existing	12K	ROM	images.	If	you	find	a	conflict	
however	with	some	software,	it	is	always	possible	to	disable	the	switching	with	the	$F82C	switch.	

You	can	also	determine	the	current	status	of	the	CXROM	switch:	

$C014 (Returns with MSB=1 if CXROM switching Enabled; MSB=0 if Disabled)
$C015 (Returns with MSB=1 if internal CXROM selected; MSB=0 if slot ROM)

Reserved addresses
The	following	addresses	are	Reserved	for	ROMX	firmware	use	and	SHOULD	NEVER	BE	ACCESSED	while	Bank	0	is	
active:	

$C7xx (Reserved)
$F82x (Reserved)
$F87x (Reserved)

ROMX API Reference ROMX+, ROMXe, ROMXc, ROMXc+
	

	

9
	

ROMX detection routine
	

The	following	code	can	be	used	to	detect	if	a	ROMX	is	present	(assumes	ROM	is	currently	active).	As	always,	if	
interrupts	are	enabled,	you	should	disable	before	running	this	and	then	re-enable	afterwards.	

					BIT $C0E0 ;Temporarily disable ZIP CHIP
 BIT $FACA ;Select ROMX Bank 0
 BIT $FACA
 BIT $FAFE
 LDA $DFFE ;Will return $4A if ROMX present
 CMP #$4A ; or $AA if ROMX in Recovery mode
 BNE Exit
 LDA $DFFF ;Will return $CD if ROMX present
 CMP #$CD ; or $55 if ROMX in Recovery mode
 BNE Exit
. ;ROMX present (do what you want, then fall through to...)

Exit
 BIT $F851 ;Return to Main Bank (MUST DO, EVEN IF ROMX NOT FOUND!)
 RTS

While	Bank	0	is	active,	you	can	get	the	ROMX	Model	from	locations	$D905-$D906	and	the	firmware	version	
from	locations	$D923-$D928.

	

Clock Driver routine
	

There	is	a	firmware	routine	at	$D8F0	used	by	the	ProDOS	clock	driver	that	can	help	when	accessing	the	clock.	It	
handles	the	INTCXROM	softswitch	used	in	the	Apple	II/II+	and	Apple	//e.		

*-------------------------------
*** PRODOS CLOCK DRIVER ROUTINE *** ;MUST BE AT $D8F0
*-------------------------------
DrvrEnt

LDA INTCXROM ;Get INTCXROM status
 PHA ;and save it
 STA INTCXROMON ;turn our Cxxx on
 JSR ReadClock
Exit PLA ;Recover INTCXROM status
 BMI PDR_RTS ;leave our Cxxx active
 STA INTCXROMOFF ;turn our Cxxx back off
PDR_RTS

RTS

After	enabling	the	ROMX	firmware	bank	and	calling	this	routine,	the	clock	data	will	be	stored	in	the	7-byte	
buffer	at	location	$2B0.	See	“Accessing	the	Real-Time	Clock	(RTC)”	for	a	breakdown	of	this	data.	

